

I can understand and solve division problems with a remainder using the array and area models.

DIVInG InTO DIVISIOn

Division is an operation that requires the sharing, grouping, or partitioning something into equal parts. Division is the inverse operation of multiplication, which allows thinkers to make connections and apply similar strategies and models for solving.

Solve a division problem with and without a remainder using the area model.

$$
10 \div 2=m
$$

Array Model

Area Model

2

Array Model

00000
00000

Standard Algorithm

m
 $2 \longdiv { 1 0 }$

10 divided into 2 groups

Compare \& Contrast: How are these models similar and different?

$$
19 \div 5=3 R 4=3 \frac{4}{5}
$$

Solve a division problem with and without a remainder using the area model.

$$
13 \div 2=m
$$

Array Model

Array Model
$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
00000000

Standard Algorithm

m
 $2 \longdiv { 1 3 }$

13 divided into 2 groups
Area Model m

\mathbf{m}
13

Fraction
$\begin{gathered}\text { Partial Products } \\ 2 \times m=13\end{gathered} \quad \frac{13}{2}=m$

Compare \& Contrast: How does the process change when a number cannot be divided evenly?

Try It!

$16 \div 3=m$
\square

$$
23 \div 4=m
$$

Solve a division problem with and without a remainder using the area model.

$$
38 \div 4=m
$$

Array Model

Array Model

000000000
000000000
0000000000
0000000000
divided into groups

Area Model

Fraction

Partial Products

\qquad

Standard Algorithm

Solve using the various models. The first one is done for you.

$$
25 \div 2=m
$$

Array Model

Array Model

000000000000
0000000000000
25 divided into 2 groups of 12

Standard Algorithm

Array Model

Area Model

$$
29 \div 3=m
$$

Array Model

Fraction

$$
43 \div 4=m
$$

Array Model

Partial Products

R 1

\square

$$
\frac{25}{2}=12 \frac{1}{2}
$$

\square
Array Model

Area Model

$$
22 \div 5=m
$$

Algorithm

Fraction
$59 \div 7=m$
Array Model
Algorithm

Area Model
Fraction

Solve using the various models. The first one is done for you.
$24 \div 4=m$
Fraction
$\longrightarrow=\longrightarrow$
$25 \div 4=m$
Fraction
Standard
Algorithm
$\longrightarrow=\longrightarrow$

Area Model
$44 \div 7=m$
Fraction
Standard Algorithm
Area Model
Area Model
Area Model

Standard Algorithm

$25 \div 4=m$	Standard
Fraction	Algorithm

Standard Algorithm

$$
34 \div 6=m
$$

Fraction

Standard
Algorithm

Solve using the various models. The first one is done for you.
$37 \div 6=m$
Fraction
Standard Algorithm

$$
=\quad=
$$

$46 \div 8=m$
Fraction
Standard
Algorithm
$\longrightarrow=\longrightarrow$
$52 \div 7=m$
Fraction
Standard
Algorithm
Area Model
$63 \div 8=m$
Fraction
Standard
Algorithm
Area Model

Area Model

$$
51 \div 6=m
$$

Fraction

Standard Algorithm Solve using the various models.
$27 \div 5$
Array Model

Area Model

Name: \qquad
Date: \qquad

Partial Products

