ring Target

I can solve division problems with and without remainders using the area model.

USInG area To assist

The area model provides a powerful visual of how and why the standard algorithm works. By applying this model and using it to assist understanding, efficient and effective problem solving will result.

Decompose $48 \div 4$ from whole to part.
$48 \div 4=m$
Area Model

Decomposition (Distributive Property)

Standard Algorithm

Reflect:

What other ways can the area of 48 be partitioned to make it easy to divide?

Decompose $96 \div 4$ from whole to part.
$96 \div 4=m$
Area Model
(Distributive Property)
$=(\div)+(\div)$

$$
\begin{array}{ll}
= & + \\
= &
\end{array}
$$

Decomposed Number Bonds

Reflect:
What other ways can the area of 96 be partitioned to make it easy to divide?

Standard Algorithm

Partition:
to solve by breaking apart

Ex. $87 \div 3=m$

$$
=(60 \div 3)+(27 \div 3)
$$

$=20 \div 9=29$

$$
\begin{aligned}
& \\
& \\
& \\
& \\
& \hline
\end{aligned} \begin{array}{l|l|l|}
10 & 10 & 9 \\
\hline & 30 & \\
\hline
\end{array}
$$

Lee solved a division problem by drawing an area model.

Area Model
Look at the area model. What division problem did Lee solve?

Decomposed Number Bonds

Show a number bond to represent Lee's area model.
Start with the total, and then show how the total is split into two parts.

Distributive Property
Represent the total length using the distributive property, and then solve.

$$
\begin{aligned}
& =(\div)+(\div) \\
& =(\quad+ \\
& =
\end{aligned}
$$

Solve $45 \div 3$ using an area model. Draw a number bond, and use the distributive property to solve for the unknown length.

Area Model
Decomposed Number Bonds
(Distributive Property)

$=(\div)+(\div)$
$=\quad+$
=

Solve 64 $\div 4$ using an area model. Draw a number bond to show how you partitioned the area, and use the distributive property to solve for the unknown length.

Area Model
Decomposed Number Bonds
Distributive Property

$$
=(\div)+(\div)
$$

$$
=\quad+
$$

$$
=
$$

Solve $92 \div 4$ using an area model. Draw a number bond to show how you partitioned the area, and use the distributive property to solve for the unknown length.

Area Model

Decomposed Number Bonds
Distributive Property

$$
=(\div)+(\div)
$$

$$
=\quad+
$$

$$
=
$$

Solve $72 \div 6$ using an area model. Draw a number bond to show how you partitioned the area, and use the distributive property to solve for the unknown length.

Area Model

Explain:
Decomposed Number Bonds
Distributive Property

Mine solved a division problem by drawing an area model.

Area Model
Look at the area model. What division problem did Lee solve?

Decomposed Number Bonds

Show a number bond to represent Mine's area model. Start with the total, and then show how the total is split into two parts.

Distributive Property
Represent the total length using the distributive property, and then solve.

$$
\begin{aligned}
& =(\div)+(\div) \\
& =\quad+ \\
& =
\end{aligned}
$$

Solve $42 \div 3$ using an area model. Draw a number bond, and use the distributive property to solve for the unknown length.

Decomposed Number Bonds
(Distributive Property)

$=(\div)+(\div)$
$=\quad+$
=

Solve $60 \div 4$ using an area model. Draw a number bond to show how you partitioned the area, and use the distributive property to solve for the unknown length.

Area Model
Decomposed Number Bonds
Distributive Property

$$
=(\div)+(\div)
$$

Solve $72 \div 4$ using an area model. Draw a number bond to show how you partitioned the area, and use the distributive property to solve for the unknown length.

Area Model
Decomposed Number Bonds
Distributive Property

$$
=(\div)+(\div)
$$

$$
=\quad+
$$

$$
=
$$

Solve $96 \div 6$ using an area model. Draw a number bond to show how you partitioned the area, and use the distributive property to solve for the unknown length.

Area Model

Explain:
Decomposed Number Bonds
Distributive Property

Solve $37 \div 2$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

Distributive Property

$$
=(\div)+(\div)
$$

$$
=\quad+
$$

$$
=
$$

Check:

Reflect:

How does the area model change when there is a remainder?

Solve $76 \div 3$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

$$
\begin{aligned}
& \text { Distributive Property } \\
& =(\div)+(\div) \\
& = \\
& =
\end{aligned}
$$

Check:

David solved the following division problem by drawing an area model. What division problem did he solve? Show how David's model can be represented using the distributive property.

Area Model

4	$40 \quad 12$

Check:
1 square unit

Distributive Property
Standard
$=(\div)+(\div)$
$=\quad+$
$=$

Solve $48 \div 3$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

Distributive Property
$=(\div)+(\div)$
$=\quad+$ $=$

Standard Algorithm

Solve $49 \div 3$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

Distributive Property
$=(\div)+(\div)$
$=\quad+$
$=$

Solve $56 \div 4$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

Distributive Property
$=(\div)+(\div)$
$=\quad+$
$=$

Solve $58 \div 4$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

Distributive Property

$$
=(\div)+(\div)
$$

$$
=\quad+
$$

Solve $66 \div 5$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

Distributive Property
$=(\div)+(\div)$
$=\quad+$ $=$

Standard Algorithm

Solve $79 \div 3$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

Distributive Property
$=(\div)+(\div)$
$=\quad+$
$=$

Standard
Algorithm

Seventy-three students are divided into groups of 6 students each. How many groups of 6 students are there? How many students will not be in a group of 6?

Area Model

Distributive Property
$=(\div)+(\div)$
$=\quad+$
$=$

Solve $35 \div 2$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

Distributive Property

$$
=(\div)+(\div)
$$

$$
=\quad+
$$

Solve $79 \div 3$ using an area model. Use the distributive property to solve for the unknown length. Check your answer using multiplication.

Area Model

Distributive Property
$=(\div)+(\div)$
$=\quad+$
$=$
Check:

Lea solved the following division problem by drawing an area model. What division problem did she solve? Show how Lea's model can be represented using the distributive property.

Area Model

$440 \quad 40 \quad 12 \square$
$=\quad+$

1 square
Check:

$$
=(\div)+(\div)
$$

Standard
Algorithm

Ninety-seven lunch trays were placed equally in 4 stacks. How many lunch trays were in each stack. How many lunch trays will be left over?

Area Model

Distributive Property
$=(\div)+(\div)$
= +
$=$

Check:

Solve $42 \div 3$ using the area model, a number bond, and a written method.

Area Model

Decomposed Number Bonds

$$
\begin{aligned}
& =(\div)+(\div) \\
& =\quad+ \\
& =
\end{aligned}
$$

Distributive Property

Explain:

Area Model

40

$1 \begin{gathered}\text { square } \\ \text { unit }\end{gathered}$

Name: \qquad
Date: \qquad

Nasaina drew the following area model to find an unknown length. What division equation did he model?

Distributive Property
$=(\div)+(\div)$
$=$

Solve $93 \div 4$ using the area model, long division, and the distributive property.

Area Model

Distributive Property

$$
=(\div)+(\div)
$$

$$
=\quad+
$$

$=$

Standard Algorithm

